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Abstract. Flexible GMRES refers to a particular modification of preconditioned GMRES in
which the preconditioner expressions vary. The algorithm has met with varying success and we
show theoretical results detailing particular equivalences of FGMRES to GMRES systems using
a construction similar to one in [11], and use this in order to detail new convergence results for
FGMRES which include a relation between FGMRES and a geometric mean of properties of certain
sequences of GMRES systems. These convergence results show that FGMRES is not as appealing
as certain aspects of simply preconditioned GMRES, and suggest a conjecture on the connection
between FGMRES and GMRES[14]. Further, we build on [14] with an analysis of the dynamical
properties of FGMRES using the convergence conditions instantiated by [28, 29, 30].
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1. Introduction. Since the advent of GMRES[19], many adaptive methods have
followed suit[1, 2]. This has incentivized the creation of an adaptive GMRES algo-
rithm, or FGMRES[20]. Since then, many other similar methods have also been
developed[10, 18, 24, 25].

Here, we consider the iteration of a linear system of equations Ax = b using FGM-
RES, and aim to build on the convergence results first shown in [20], the backward
analysis of FGMRES provided in [9] (which followed a similar result for GMRES[6]),
and problems posed in [17]. However, unlike [9], we will not look at backward-error
analysis, but rather a different way in which we can compare the convergence analysis
to the original convergence results of GMRES[19].

In the course of extending the GMRES results, we will establish a relation between
GMRES and FGMRES by introducing a matrix Y (which we will refer to in this paper
as ’the Y matrix’) for which GMRES using Y is equivalent in performing our original
FGMRES iteration on Ax = b and is constructed in a manner similar to the key
construction found in [11]. Using this, we can extend results of GMRES on systems
with symmetric part positive definite, and this result will have as a consequence a
relation between GMRES and FGMRES using the geometric mean.

From there we will detail the consequences of this theoretical property. This
includes a spectral relation between Y and our original constituting matrices, and
examples that indicate a strong dependence of FGMRES on the initial vector chosen
in the iteration or right-hand side. Finally, we leave off with a conjecture for the
relation of convergence between GMRES and FGMRES.

Because of the dependence of the Y matrix on the initial vector, this necessitates
a discussion on the influence this has on possibly stagnating. To this end, we further
the discussion from [14] and use the results from [28, 29, 30] in order to apply a
dynamical systems approach to studying FGMRES.

The remainder of the paper is organized as follows. In section 2 we recall some
basic facts of convergence of GMRES that we wish to extend to FGMRES. Section
3 is dedicated to convergence results. In section 4 we illustrate with some numerical
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examples which includes our dynamical analysis as well, and we conclude in section
5.

2. GMRES. Let Kk := span{r0, Ar0, A
2r0, · · · , A

k−1r0} be a Krylov subspace
corresponding to a given matrix A and its residual r0. It is known that GMRES on
A and r0 generates an orthogonal basis corresponding to this Krylov subspace. This
allows us to write the iterates of GMRES at step m as xm = x0 + Vmym, where
Vm forms an orthonormal basis of the Krylov subspace produced by the Arnoldi
method.[13, 15, 22]. We can alternatively express this observation as the Arnoldi
relation AV = V H, with H being upper-Hessenberg.

In particular, and to provide a comparison to FGMRES later, the standard GM-
RES algorithm may be expressed as:

Algorithm 2.1 (GMRES).
r0 = b−Ax0, β := ||r0||2, v1 = r0

β

For j = 1, 2, ...,m
wj := Avj
For i = 1, ..., j

hij := (wj , vi);wj := wj − hijvi
End
hj+1,j = ||wj ||2
If hj+1,j = 0

m := j
break

vj+1 =
wj

hj+1,j

End
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Arnoldi

Hm := [hij ]
Find ym = min||βe1−Hmy||2 via a Givens rotation QR process, keeping in mind that
H is Hessenberg.
xm := x0 + Vmym [15, 19, 22]

With this description of GMRES, we can now outline the theoretical results with
which will be compared with FGMRES.

The following theorem will be similar to theorem 3.2 by relating the solution of
GMRES at each step to a polynomial of powers of the given matrix A. This is a
concept which will be important later in the proof of lemma 3.4.

Theorem 2.2. [15, 22] Let xm be the mth step approximate solution obtained by
GMRES, and rm := b−Axm. Then

xm = x0 + qm(A)r0(2.1)

and

||rm||2 = ||(I −Aqm(A))r0||2 = minq∈Pm−1
||(I −Aq(A))r0||2(2.2)

Where q is a polynomial of degree not exceeding m− 1.

With this theorem we have only to recall one more important convergence re-
sult that can be compared with that of FGMRES. In particular, this illustrates the
convergence of GMRES on matrices with symmetric part positive definite.

Theorem 2.3 (Residual Minimization).
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||rk+1||
2
2 ≤ [1− µ2

σ2 ]||rk||
2
2

where

σ := ||A||2 = ρ
1
2 (ATA)

µ := λmin(AS) = λmin(
1
2 (A+AT ))

(2.3)

[15, 22]
With this background, we can now discuss the connections between GMRES and

FGMRES, and use this connection to extend the convergence results in FGMRES.[14]

3. FGMRES. As outlined above for GMRES, the Arnoldi loop constructs the
following orthogonal basis of a preconditioned Krylov subspace:

Span(r0, AM
−1r0, · · · , (AM

−1)m−1r0)(3.1)

In which the new vector is obtained from the previous vector in the process. The
last step is a linear combination of the previous vectors zi = M−1vi, i = 1, · · · ,m.
Here, we need only apply M−1 to Vmym. However, if we allow the preconditioner to
change at each step, we would have

zj = M−1
j vj(3.2)

If we perform this modification, we may modify the above algorithm to create
GMRES with flexible preconditioning, or FGMRES:

Algorithm 3.1 (FGMRES).
Let x0 be an initial vector, m a preset dimension of the Krylov subspace, and define
Hm ∈ ℜ(m+1)×m.
Perform Arnoldi
Compute r0 = b−Ax0, β = ||r0||2, v1 = r0

β

For j = 1, · · · ,m do
zj := M−1

j vj
w := Azj
For i = 1, · · · , j do hi,j :=< w, vi >,w := w − hi,jvi
hj+1,j = ||w||2, if hj+1,j = 0 break, vj+1 = w

hj+1,j

Zm := (z1, · · · , zm)
The approximate solution is then xm = x0 + Zmym, where ym is the solution to the
linear least squares problem Hmy = βe1.

It is clear that the above algorithm is mathematically equivalent to preconditioned
GMRES when Mj = M for j = 1, · · · ,m. [3, 22, 26]

In order to compare FGMRES with GMRES (before extending FGMRES results
past the current literature and provide comparisons with the results listed in the
previous section), we recall a basic and established properties of FGMRES which
mimics theorem 2.2 above.

Theorem 3.2. minx∈x0+span(Zm)||b−Ax||2 = ||b−Axm||[22]
Finally, in order to extend these GMRES results, and add to the results on FGM-

RES, we note that FGMRES is equivalent to GMRES on a particular matrix.
Theorem 3.3. FGMRES applied to a linear system Ax = b is equivalent to

applying GMRES to a linear system Y x = b (with the same initial vector x0) for
some n× n matrix Y .
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Proof.
Notice that if FGMRES uses a sequence of preconditionersM−1

i A, then FGMRES
minimizes the residual over a linear combination of the vectors z0, z1, . . ., and thus
similar to what was done in [11] Y zi = zi+1, 0 ≤ i ≤ n − 1 defines the matrix for
which performing GMRES on Y is equivalent to applying FGMRES on A with the
sequence of preconditioners Mi. Specifically, Y can be found algebraically as:

Y = (z1|z2|z3| . . .)(z0|z1|z2| · · ·)
−1

= Z1Z
−1
0

(3.3)

In this way, FGMRES is equivalent to GMRES on Y , and Y describes the con-
vergence behavior of FGMRES.

From this point, the Y matrix defined in the previous theorem forms a lynchpin
of our analysis.[14]

In order to use this expression for Y carefully, to combine it with the result of
[28], and establish very limited convergence results to compare with the previously
exhibited GMRES convergence results, we will need the following lemma. This is
essentially a stability result of GMRES that is applied to FGMRES and places a re-
striction on the variation of the preconditioners from one iteration to another (similar
to, yet looser than, some results in [9, 10, 21]). A much stricter bound can be found
using [6], but for the purposes of this study we neither need such strict results, and
we will use the following result to build a connection between the behavior of the
residual norm of FGMRES and the geometric mean of the behavior of the residual
norm of the individually preconditioned GMRES iterations.

Lemma 3.4. Assume that ||M−1
i −M−1

j || ≤ ǫ.
Let the initial vector be given as x0 and r0 := b−Ax0.
Let xk be the solution after k steps of FGMRES (xk 6= x) and the Hessenberg

matrix Hk be nonsingular.
Let a1 = M−1

1 r0, and define inductively ak = Σk
j=1M

−1
j (Σk−1

i=1 αi,j,kMiai+γk−1,jAak−1)
where αi,j,k, γk−1,j are arbitrary.

Define the Y -matrix so that Y ai = ai+1 as in theorem 3.3.
Let yk be the solution after k steps of GMRES on Y with M−1

1 r0 in place of r0.
Then ||xk − yk|| ≤ Ckǫ for some constant Ck or ||b−Axk|| ≤ ||b−Ayk||.
Proof.
We leave the proof of this in Appendix A.

[14]
With this, we may now establish some basic results for FGMRES, showing not

only in a certain case that FGMRES converges if GMRES does (a basic theoretical
result for many adaptive methods that build on top of a previous, non-adaptive ver-
sion), but that FGMRES shares an amiability with matrices that have symmetric
part positive definite like GMRES, paralleling theorem 2.3.

Theorem 3.5 (Y is Positive Definite). If each of the matrices M−1
i A has sym-

metric part positive definite parts and ||M−1
i −M−1

j || ≤ ǫ, then FGMRES converges.
Proof.
In lemma 3.4, let γ2,j = 1 for j = 1, · · · ,m, else α, γ = 0, let z0 = M−1

1 r0, then
a1 = z0. Consequently, by theorem 3.3, the residual rm resulting from using GMRES
on Y defined by ai cab be approximated by the actual residual term using FGMRES
or bounds it from above.
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Then by theorem 2.2 applied to GMRES on Y :

||rm||m

= (min
β
||z0 − (Σm

i=1βi ·M
−1
i Az0)||)

m

≤ Πm
i=1minβi

||r0 − βi ·M
−1
i Az0||

(3.4)

With each item in the product is the minimum residual with respect to M−1
i A,

and thus by theorem 2.3:

||rm||m ≤ [Πm
i=1(1−

µ2
i

σ2
i

)]||M−1
1 ||||r0||(3.5)

where µi = λmin(M
−1A+ (M−1A)T )/2, σi = ||M−1

i A||2

[14]
Of particular interest in theorem 3.5 is the appearance of the geometric mean

in equation (3.5). Following this, and recalling theorem 3.3, we wish to analyze this
matrix Y to follow out this idea.

The result we obtain is very limited, but does point to the expanding viable con-
nection with FGMRES and a specific geometric mean on its corresponding GMRES
counterparts:

Theorem 3.6 (Unit Disk Convergence of Y). If each of the matrices I −M−1
i A

has norm < 1, ||M−1
i − M−1

j || ≤ ǫ, and the right-hand side vector M−1
1 b has all

nonzero entries under the Jordan basis of the matrix Y described above (and is non-
singular), then the residual norm of FGMRES at step k is identical to the residual
norm of GMRES at step k on a matrix Y whose spectral radius is asymptotically
bounded by the geometric mean of the norm of the matrices I −M−1

i A.
Proof.
Let b be replaced by M−1

1 b and x0 be replaced by 0, it will be useful to note a
similar construction of the FGMRES matrix that if we consider minimizing the resid-
ual over the polynomial of the vectors b, (I −AM−1

1 )b, (I −AM−1
2 )(I −AM−1

1 )b, . . .,
then by theorem 3.3 performing FMGRES is equivalent to performing GMRES on a
Y with

Y = [((I −AM−1
1 )b|(I −AM−1

2 )(I −AM−1
1 )b| · · ·)

(b|(I −AM−1
1 )b|(I −AM−1

2 )(I −AM−1
1 )b| · · ·)−1]

= Z1Z
−1
0

(3.6)

We will perform the rest of the analysis with this Y . The rest of the result follows
by applying the previous lemma 3.4 with coefficients chosen to give the matrix Y
above, namely, αi,i,i = 1 and γi,i = −1 (else α, γ = 0).

Assume that Y is nonsingular, and that λ1 is an eigenvalue corresponding to
the spectral radius, and if the Jordan canonical form of Y = XJX−1 then the right
hand side b is such that eTmX−1b 6= 0 (by our hypothesis) where m is the geometric
multiplicity of λ1. Hence,

(

b|Y b|Y 2b| · · ·
)

c = Y nb(3.7)
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Let the Jordan form of Y = XJX−1 with J ordered so that the first Jordan block
contains λ1 with geometric multiplicity m. Further, since X is nonsingular, there
exists xl such that xT

l X = eTm. Finally, let d = X−1b. With these simplifications,
multiply the above through by xT

l :

(0, 0, . . . , 0,Σn
i=1ciλ

i−1
1 , 0, 0, . . . , 0)d = xT

l Y
nb(3.8)

Since ci satisfies the minimal polynomial of Y :

λn
1di = xT

l Y
nb(3.9)

By assumption di 6= 0, so then:

|λ1|
n ≤

|xT
l Y nb|

||Y nb||

di

||b||

||Y nb||

||b||
(3.10)

Using Bunyakovsky-Cauchy-Schwartz inequality together with the fact that if
xT
l X = eTm then ||xl|| ≤ ||X−1||:

|λ1|
n ≤

1
di

||X−1||||b||

||Y nb||

||b||
(3.11)

Let C := 1
di

||X−1||||b||

, then:

|λ1| ≤ C
1
n (

||Y nb||

||b||
)

1
n(3.12)

Now using the fact that Y nb = Π(I −M−1
i A)b:

|λ1| ≤ C
1
n (||Π(I −M−1

i A)||)
1
n(3.13)

Thus, noting that C
1
n → 1, if the geometric mean of the norm corresponding

preconditioners (||I −M−1
i A||) are < 1, the spectral radius is also < 1. [14]

4. Numerical Experiments and Examples. We now systematically illustrate
the above two convergence theorems for FGMRES.

First, as an important remark, theorem 3.5 can be used to give some weak con-
vergence bounds–even in the case where not all of M−1

i A have symmetric positive
definite parts (since the minimum residual bound still holds).

That is to say, µi ∈ σ(I) − σ(Ji), and when we vary the stiff subspace, a weak
bound on when convergence still occurs can be thus given by the above result.
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4.1. Numerical Test: Convergence rate of FGMRES with components

that have symmetric positive definite parts. The following illustrates theorem
3.5. To calculate the bound we use the minimum residual bound, and then we use
the bound formed by the geometric mean of the residual norm bound for each of the
individually preconditioned GMRES iterations as in equation (3.5). Afterwards, we
compare it with residual norm of FGMRES. Since the minimum residual bound is not
tight, the overall bound is not tight.

Figure 1. FGMRES bound for components
with symmetric positive definite parts

A similar numerical generalization occurs with theorem 3. Theorem 3 does not
show that in the unit norm case that the residual norm of FGMRES asymptotically
approaches the geometric mean of the residual norm of each individual preconditioned
GMRES (it only analyzes the spectra of the matrix Y ), yet this claim is backed by
numerical experiments as shown below.[14]

4.2. Numerical Test: FGMRES with a family of matrices where ||M−1
i A|| <

1 v. a bound which is the geometric mean of the residual norms of the in-

dividually preconditioned GMRES iterations. The following exhibits the tight
bound the geometric mean of the residual norm of the individually preconditioned
GMRES iterations gives. The places where FGMRES crosses the bound might be
due to errors from the constant factor C in the proof of theorem 3.
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Figure 2. FGMRES residual norm v. geometric mean of GMRES residuals

Theorem 3 of the previous section included a restriction on the right-hand side
of the linear system of the original system. This suggests that FGMRES might have
a strong dependence in more general circumstances. This forms the bulwark of a
conjecture that we propose in the conclusion of this paper. Before this, we first
show an example that shows that we should indeed expect any sufficiently general
theoretical property of FGMRES should include some dependence on the right-hand
side of the original system or the initial vector iterate. This forms an important
demonstration to introduce the dynamical properties in FGMRES.

4.3. Example: FGMRES Failure. Take as an example, an FGMRES algo-
rithm which has M−1

i A as a matrix that permutes rows i and i + 1 for i < n − 1,
r0 = ei, M

−1
n−1A an arbitrary matrix, and M−1

n A = I. Thus since eTi ej = 0 (i 6= j),
the Arnoldi process will trivially produce:

Y =
(

e1 e2 · · · en−1 a
)−1 (

e2 e3 · · · a a
)

= P1n

(

In−1 C
0 B

)

(4.1)

Where P1n is the permutation matrix the permutes the first and last rows, and
a can be made an arbitrary vector via appropriate choice of M−1

n−1A and r0. Thus,
in this simple example, the spectrum can depend wholely on r0 (because P1n is non-
singular, then multiplication by it forms a homeomorphism; therefore, if B is made
to vary its eigenvalue in modulus from 0 to ∞, then the same must occur under the
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homeomorphism 1).[14]

4.4. Dynamical System Properties of FGMRES. What the previous ex-
ample points out is that the Y matrix is dependent on the initial starting vectorof
FGMRES. This gives an extra degree of variance that the original GMRES algorithm
does not have. To this end we note the definition of the following functions of Zavorin
[28, 29, 30]:

FV (y) := diag(y) · V HV y

G(λ1, λ2, · · · , λn) := (−1)n+1conj(Πn
k=1,k 6=j

λk

λj−λk
)

(4.2)

Since changing the initial vector can cause potentially large alterations in the
matrix Y that GMRES is applied to, then if we are trying to determine the possibil-
ity of FGMRES to stagnate (and given that FV is dependent on a relatively stable
eigenproblem), we are left with studying the dynamics of G.

To this end, we consider G as a discrete dynamical system. We aim to show
that the convergence properties of G are not of a straightforward kind that one would
expect from an algorithm used to solve linear systems. In particular, even for the
benign n = 3 case, there are heteroclinic connections and other possible manifolds
that underlie the structure of GMRES. Thus, we consider n = 3, take G over ℜ3,
and note that G(ax) = G(x). With these simplifications, then we can instead identify
G as acting on S2, and for (θ, φ) ∈ S2, we define G̃ as G with domain and output
restricted to the unit sphere. In particular, we define G̃ as:

G̃(

[

θ
φ

]

=

[

arccos(sinφ cosφ sin3(θ)(cosφ− sinφ))

arctan(cot(φ) sin θ cosφ−cos θ
sin θ sinφ−cos θ )

]

(4.3)

We note that with such a definition that an analytic continuation can be made for
when x = y, that therefore (θ, φ) = (π2 ,

π
4 ) is a fixed point, and that the eigenvalues of

the Jacobian of G̃ at this point are −2, 0 respectively. Furthermore, there is a period
two oscillation between (π2 , 0) and (π2 ,

π
2 ) which both have Jacobians with eigenvalues

of modulus < 1. Therefore, by [4][p. 126], we have one saddle hyperbolic point, and
a convergent periodic hyperbolic point.

To explore this more, we look at the following picture showing a Newton-Raphson
coloration of the domain of G̃, i.e., [0, π]× [−π

2 ,
π
2 ]. The lighter the shading the more

stable the iteration of G̃. The curling line through the middle of the picture connects
all of the hyperbolic points mentioned in the previous paragraph, and therefore forms
a heteroclinic connection. This line through the middle of the picture is therefore the
’bad’ non-convergent domain that shows where–unless the eigenbasis of the matrix
happen to satisfy the non-stagnation condition–FGMRES is also likely to stagnate.

1The authors would like to thank Kyle Kloster and Jake Noparstak for this argument
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Figure 3. Newton-Raphson like plot of iterations of G̃ function centered at (π2 ,
π
4 )

We strongly emphasize that this is not necessarily a bad property. The extra
variance in Y upon each restart of FGMRES compared to the simple floating point
variation of the entries of the original matrix A in GMRES can possibly force the
system away from stagnation with great ease and may explain FGMRES’ performance
given the otherwise stultifying geometric mean conjecture. 2

5. Conclusion. In summary, then, we have shown that FGMRES is equivalent
to GMRES on a different matrix Y . Using this matrix, we were able to pull up basic
convergence results from standard GMRES theory. Namely, that GMRES converges
if the symmetric part of the preconditioned matrix is positive definite was extended
into a similar yet appropriate form for FGMRES.

More importantly, however, was that this result introduced the concept of utilizing
geometric mean to relate actions on FGMRES to individual GMRES iterations. We
were able not only to show that FGMRES has a dependence on positive definiteness
of the symmetric part of the corresponding preconditioned matrices, but that this this
dependence is precisely that the geometric mean of the bounds for the convergence
rate of GMRES formed a bound for the convergence rate of FGMRES.

Once this concept was established, we then were able to find similar properties
hidden in FGMRES that followed a geometric mean relationship with similar key
properties of FGMRES. Namely, a bound of the spectral radius of Y followed this
relationship.

We then exhibited some numerical examples that both backed up the above de-
scribed FGMRES convergence bound for which the symmetric part of the precondi-
tioned matrices of A were all positive definite, as well as showed that this geometric
mean property indeed works in more cases than we were able to definitively prove
here. We also showed a specific example that shows that restrictions on the right-
hand side–just as in our result regarding an asymptotic bound on the spectral radius

2The author would like to thank discussion with Kyle Kloster, Ahmed Sameh, Mestapha
Oumouni, and Tim Kelley
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of Y –should be expected in general for FGMRES.[14]
The final numerical experiment showing the dynamics of Zavorin’s function is–in

truth–a starting point. In actuality, and in higher dimensions, it is entirely possible
that the dynamical properties will not be so simple as having a 1D heteroclinic con-
nection. As can be evidenced in the first few iterations in the shading of Figure 3,
the ranges of each successive iteration are incredibly complex. Therefore, it is very
likely that higher-dimensional hyperbolic points will lead to much more interesting
actions. Also, FGMRES still manages to hide this stagnating manifold into a rather
small space. Furthermore, the introduction of a dynamical systems approach into
FGMRES research can possibly lead into a rich area of study.

These results all converge around similar ideas, and we would like conclude by of-
fering the following conjecture: that under some suitable restriction on A and b (given
example 4.3 above) that if GMRES applied to each of the individual preconditioners
of FGMRES converges, then not only will FGMRES converge; but its the residual
norm at step k of FGMRES will asymptotically approach the geometric mean of the
residual norm of each of the individually preconditioned GMRES iterations at step k.

It should be noted that if true, this exposes a flaw in the existing literature on
FGMRES. Namely, if this conjecture is true, then FGMRES seems to no better than
simply choosing the best preconditioner in the adaptive preconditioning in FGMRES.
There are three explanations for this. First is that there might be computational
advantages for not generating the preconditioner explicitly that mean that the algo-
rithm must be theoretically treated as a FGMRES iteration[2]. Second, it may be
theoretical impossible for the preconditioners to be generated a priori[1, 8]. Third, as
mentioned previously, given the additional theoretical dependence on the right-hand
side, this might allow us to dynamically push ourselves out of the domains where
normal GMRES would have stagnated. However, given the strong restrictions on the
preconditioners placed in lemma 3.4, or the unexpected conditions on the right-hand
side exhibited in example 4.3 and theorem 3, the ’suitable restriction’ on A and b
might be stronger than anticipated. In either case, FGMRES remains to fill in an im-
portant gap in applications and still exhibits a strong relationship with the theoretical
and practical advantages of GMRES.

Appendix A. FGMRES DECOMPOSITION LEMMA.

In this appendix, we restate and prove the lemma required to analyze the precon-
ditioner dependence of FGMRES.

Lemma A.1. Assume that ||M−1
i −M−1

j || ≤ ǫ.
Let the initial vector be given as x0 and r0 := b−Ax0.
Let xk be the solution after k steps of FGMRES (xk 6= x) and the Hessenberg

matrix Hk be nonsingular.
Let a1 = M−1

1 r0, and define inductively ak = Σk
j=1M

−1
j (Σk−1

i=1 αi,j,kMiai+γk−1,jAak−1)
where αi,j,k, γk−1,j are arbitrary.

Define the Y -matrix so that Y ai = ai+1 as in 3.3.
Let yk be the solution after k steps of GMRES on Y with M−1

1 r0 in place of r0.
Then ||xk − yk|| ≤ Ckǫ for some constant Ck or ||b−Axk|| ≤ ||b−Ayk||.
Proof.
We show this inductively.
k = 1:
Note that x1 minimizes the residual over x0 + Span(M−1

1 r0) by theorem 3.2
and y1 minimizes the residual over x0 + Span(M−1

1 p(r0)) = x0 + Span(α1M
−1
1 r0) =

x0 + Span(M−1
1 r0) by theorem 2.2.
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Thus x1 = y1.
k = N :
Assume that ||xi − yi|| ≤ Ciǫ, ∀1 < i < N .
Note that xi − x0 is a linear combination of z1, z2, · · · up to zi (where zi are the

same zi vectors in the FGMRES algorithm).
Thus xk minimizes the residual over x0 + Span(Zk) = x0 + Span({xi − x0|1 <

i < N} ∪ zk) = x0 + Span(X1) (by theorem 3.2 above).
Note that yi − x0 is a linear combination of a1, a2, · · · up to ai.
Thus yk minimizes the residual over x0 + Span(z0, Y z0, · · · , Y

i−1z0) = x0 +
Span({yi − x0|1 < i < N} ∪ ak) = x0 + span(X2) (by theorem 2.2).

By algorithm 3.1 above, we have

zk = M−1
k (Σk−1

i=1 βiMizi + ζk−1Azk−1).(A.1)

And because the spans are the same as shown above, then under a different linear
combination

zk = M−1
k (Σk−1

i=1 β
′
iMi(xi − x0) + ζ ′k−1A(xk−1 − x0))(A.2)

Furthermore, by hypothesis of ak as a polynomial expression of the prior ai:

ak = Σk
j=1M

−1
j (Σk−1

i=1 αi,j,kMiai + γk−1,jAak−1)(A.3)

And because the spans are the same, then under a different linear combination

ak = Σk
j=1M

−1
j (Σk−1

i=1 α
′
i,j,kMi(yi − x0) + γ′

k−1,jA(yk−1 − x0))(A.4)

Note that γ′
k−1,j 6= 0 as when this = 0 this corresponds to the breakdown case of

FGMRES, which can not happen since Hk is nonsingular. Now define z′k as:

z′k = Σk
j=1(

γ′
k−1,j

ζ ′k−1

zk − Σk−1
i=1

γ′
k−1,jβ

′
i

ζ ′k−1

(xi − x0) + Σk−1
i=1 α

′
i,j,k(xi − x0))(A.5)

Further, if ||M−1
i −M−1

j ||2 ≤ ǫ then for any vectors p, q

||p+M−1
j Miq|| = ||y + (M−1

j −M−1
i +M−1

i )q||

≤ ||p+ q||+ ǫ||q||
= ||p+ q||+ C||ǫ||

(A.6)

We will use A.6 repeatedly in what follows.
Then, also recalling that ||xi − yi|| ≤ Ciǫ:

||z′k − ak||2 = ||Σk
j=1(

γ′
k−1,j

ζ′
k−1

zk − Σk−1
i=1

γ′
k−1,jβ

′
i

ζ′
k−1

(xi − x0) + Σk−1
i=1 α

′
i,j,k(xi − x0))− ak||2

(A.7)
By equation A.2:

12



= ||Σk
j=1(

γ′
k−1,j

ζ′
k−1

M−1
k (Σk−1

i=1 β
′
iMi(xi − x0) + ζ ′k−1A(xk−1 − x0))

−Σk−1
i=1

γ′
k−1,jβ

′
i

ζ′
k−1

(xi − x0) + Σk−1
i=1 α

′
i,j,k(xi − x0))− ak||2

(A.8)

By equation A.4:

= ||Σk
j=1((M

−1
k (Σk−1

i=1

γ′
k−1,jβ

′
i

ζ′
k−1

Mi(xi − x0)

+γ′
k−1,jA(xk−1 − x0))− Σk−1

i=1

γ′
k−1,jβ

′
i

ζ′
k−1

(xi − x0) + Σk−1
i=1 α

′
i,j,k(xi − x0))

−M−1
j (Σk−1

i=1 α
′
i,j,kMi(yi − x0) + γ′

k−1,jA(yk−1 − x0)))||

(A.9)

Using A.6:

≤ ||Σk
j=1(((Σ

k−1
i=1

γ′
k−1,jβ

′
i

ζ′
k−1

(xi − x0)

+γ′
k−1,jM

−1
k A(xk−1 − x0))− Σk−1

i=1

γ′
k−1,jβ

′
i

ζ′
k−1

(xi − x0) + Σk−1
i=1 α

′
i,j,k(xi − x0))

−(Σk−1
i=1 α

′
i,j,k(yi − x0) + γ′

k−1,jM
−1
j A(yk−1 − x0)))||+ Cǫ

= ||Σk
j=1(((γ

′
k−1,jM

−1
k A(xk−1 − x0)) + Σk−1

i=1 α
′
i,j,k(xi − x0))

−(Σk−1
i=1 α

′
i,j,k(yi − x0) + γ′

k−1,jM
−1
j A(yk−1 − x0)))||+ Cǫ

≤ Σk
j=1(||γ

′
k−1,jM

−1
k A(xk−1 − x0)− γ′

k−1,jM
−1
j A(yk−1 − x0)||

+||Σk−1
i=1 α

′
i,j,k(xi − x0)− Σk−1

i=1 α
′
i,j,k(yi − x0)||) + Cǫ

≤ Σk
j=1(||γ

′
k−1,jM

−1
k A(xk−1 − x0)− γ′

k−1,jM
−1
j A(yk−1 − x0)||

+Σk−1
i=1 |α

′
i,j,k|||xi − yi||) + Cǫ

(A.10)
Induction hypothesis:

≤ Σk
j=1(||γ

′
k−1,jM

−1
k A(xk−1 − x0)− γ′

k−1,jM
−1
j A(yk−1 − x0)||) + Cǫ

≤ Σk
j=1(||M

−1
k ||||γ′

k−1,jA(xk−1 − x0)− α′
k−1,j,kMkM

−1
j A(yk−1 − x0)||) + Cǫ

(A.11)

A.6 again:

≤ Σk
j=1(||M

−1
k ||||γ′

k−1,jA(xk−1 − yk−1)||) + Cǫ(A.12)

Induction hypothesis:

≤ Cǫ(A.13)

Therefore, under the assumption that γ′
k−1,j 6= 0 for some j, then span(X1) =

span(X ′
1) where the last column of X ′

1 is z′k and ||z′k − ak||2 ≤ Cǫ.
But since ||(yi−x0)− (xi−x0)|| ≤ Ciǫ, then ||X1−X2||2 ≤ ||X1−X2||F ≤ nCXǫ
Then by Wedin [5, 12, 27], we know that the forward error for a linear least square

problem is ||xk − yk||2 ≤ (1 + 2κ2(X1))nCXǫ = Ckǫ.
Should γ′

k−1,j = 0∀j, then this corresponds to span(X1) ⊃ span(X ′
1) where the

last column of X ′
1 is z′k and ||z′k − ak|| ≤ Cǫ. Therefore, if we let x′

k correspond
to the solution using X ′

1, then similar to the previous line ||x′
k − yk||2 ≤ Ckǫ, and

||b−Axk|| ≤ ||b−Ax′
k|| = ||b−Ayk +A(yk − x′

k)|| ≤ ||b−Ayk||+ Ckǫ.
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