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Abstract. This paper improves the Recursive Projection Method (RPM) as first discussed
in [1]. In particular, we will present a subspace version that will effectively utilize parallelism as
well as conclude with some theoretical results regarding an equivalent preconditioner expression for
RPM that is useful for nested inner-outer preconditioner analysis and convergence rate results ([11]).
Furthermore, we include a discussion and suggestions for the heretofor neglected coupling factor in
RPM.
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1. Introduction. Computational techniques for solving linear system of equa-
tions such as Ay = b, for A ∈ ℜn×n, b ∈ ℜn×1 are frequently highly dependent on
the spectra of the initial matrix A or various consequent matrix formulations such as
the iteration matrix. Many theoretical results that compute the solution to a linear
system even necessitate some a priori bound of the spectral radius for either the
originating matrix A or resultant matrices utilized implicitly or explicitly during the
course of many different numerical computations.

One possible method, explored initially by [19] and finally in the form of the
Recursive Projection Method (RPM) in [1], uses some form of deflation. Deflation
strategies allow us to manipulate eigenvalues to improve overall performance in solv-
ing linear systems while at the same time cautiously exempting oneself from the
prohibitive costs of direct eigenvalue computation.

RPM is in turn based on iterative strategies for solving linear systems, including
one of the oldest: Richardson iteration [20]. It is based on the fact that the slow
convergence (or even divergence) of Richardson’s method is dependent entirely on
the eigenvalues of highest modulus of its Jacobian operator. RPM approximates two
spaces P and Q that correspond respectively to an unstable and stable space. The
unstable space can then be deflated out in order to improve overall performance.

There exist similar strategies that apply deflation to GMRES or other Krylov
methods [2, 5, 6, 15, 17, 18]. We note that RPM can be used as a preconditioning
subroutine in such algorithms (similar to [7, 9, 10, 12, 14]), or in specific cases can
show robustness akin to RPM [1].

However, RPM currently has issues that we hope to build upon in order to add
to its own theoretical framework, but also to other algorithms that may call or nest it
as an efficient dependency (for example, using preconditioned GMRES with RPM as
the preconditioner). One of these issues with RPM is a lack of a parallel implemen-
tation. This can be an issue for many iterative algorithms that solve linear systems,
as many iterative algorithms contain dependencies to previous iterations at each cur-
rent iteration that make effective parallelism across iterates very difficult to achieve.
We instead do this by introducing a few, strategically placed block vectors inside of
the deflation process by rewriting the algorithm to allow the replacement of a power
method lying at the heart of the original RPM algorithm with a subspace method.
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This improvement permits us a parameter by which we can now have an effective
parallelization.

We describe a number of a number of possible theoretical improvements to the
underlying convergence theory of RPM including an explicit description of the rate
of convergence of RPM. In previous analyses of RPM, the theoretical dependence
of the algorithm was traced from nonlinear stabilization procedures to the specific
application of Richardson methods. This in turn created a simplified expression for
the Jacobian of the algorithm [1]. However, this is not enough to help completely
describe the convergence properties of RPM, and in order to explicitly describe the
rate of convergence of RPM, we introduce a new preconditioner expression for RPM.
This by itself is an important result, as we may now model RPM as a preconditioner,
which further means that the possibility of analysis of RPM as a subroutine in other
algorithms is now drastically simplified.

The rest of the paper is organized as follows. In section 2 we introduce and
review the Recursive Projection Method (RPM). Then we provide new theoretical
results and correct previous theoretical results in section 3, before introducing a new
generalized convergence theorem. After this, we recall the implementation details
and definitions in section 4, and use this to propose a parallel Recursive Projection
Method. In section 5 we discuss numerical results, and finally we conclude in section
6.

2. The Recursive Projection Method. The Recursive Projection Method is
a general methods that attempts to enhance finding the fixed points of given functional
F , solving the problem

y = F (y) : ℜN ×ℜ → ℜN(2.1)

where F can be any continuous functional. Here, we will solely consider the fixed
iteration functional based on the Richardson iteration. The Richardson iteration
attempts to solve a linear system Ay = b by splitting the matrix A = M −N . It can
be expressed in the form of a fixed iteration functional by

F (y) = M−1Ny +M−1b(2.2)

RPM also uses a stabilization procedure defined by deflating where the Jacobian
of (2.2) (which in this case is simply M−1N) has spectra less than 1 or greater than
1.

In particular, we let P be the invariant subspace of where M−1N has spectra
> 1, Q be the orthogonal complement to this space (we do not consider the case
where 1 is an eigenvalue) so that P+Q = ℜn, P and Q be the projectors on to the
spaces P and Q respectively, p := Py, q := Qy, then we denote

p = f(p, q) := PF (y)
q = g(p, q) := QF (y).

(2.3)

where p, q are meant to express the vectors, and f, g the projection of the func-
tional F . With this, we split the iteration so that on the ’good’ subspace correspond-
ing to Q we continue with a fixed point iteration (recalling that for Jacobian having
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spectra < 1 we are guaranteed convergence to a fixed point), and perform a modified
chord method on the ’bad’ subspace P. This results in the following iteration:

(I − f
(0)
p )(p(k+1) − p(k)) = f(p(k), q(k))− p(k)

q(k+1) = g(p(k), q(k))
(2.4)

(fp is the derivative of f with respect to the subspace P, and the 0 superscript
denotes that we take the first iterate’s approximation to the derivative, i.e., if J (0) :=

J(p(0), q(0)) is the Jacobian of F at (p(0), q(0)), then f
(0)
p = PJ (0)P ).[19]

We now simplify by applying (2.2) to (2.4), performing the necessary algebraic
simplifications, letting Z be an orthogonal basis for P of dimension m (so that P =
ZZT , I = ZTZ), H := M−1N , noting that P was chosen invariant under H thus
QHP = 0 (at the moment, this assumption will not be used until section 3), and
letting u =: ZT y. Using these definitions and notations, we may simplify the first
equation of (2.4) as:

(I − PHP )(p(k+1) − p(k)) = P (Hy(k) +M−1b)− p(k)

(I − ZZTHZZT )(p(k+1) − p(k)) = ZZT (Hy(k) +M−1b)− p(k)

(I − ZZTHZZT )p(k+1) = ZZT (Hy(k) +M−1b)− ZZTHPp(k)

(I − ZZTHZZT )p(k+1) = ZZT (Hy(k) −Hp(k) +M−1b)
(ZT − ZTHZZT )p(k+1) = ZT (Hq(k) +M−1b)
(I − ZTHZ)ZT y(k+1) = ZT (Hq(k) +M−1b)
(I − ZTHZ)u(k+1) = ZT (Hq(k) +M−1b)

.(2.5)

Likewise for the second equation in (2.4):

q(k+1) = g(p(k), q(k))
q(k+1) = Q(Hy(k) +M−1b)
q(k+1) = Q(Hq(k) +HZu(k) +M−1b)

(2.6)

In summary, we obtain:

(I − ZTHZ)u(k+1) = ZT (Hq(k) +M−1b)
q(k+1) = Q(Hq(k) +HZu(k) +M−1b)

(2.7)

(Notice that because we have assumed that 1 is not an eigenvalue that (Ir −
ZTHZ) is nonsingular and therefore this is well-defined).

In order to generalize, we introduce i, j components in order to vary the codepen-
dent nature on the Q,P subspaces respectively (2.7):

Algorithm 2.1 (RPM Iteration).

(I − ZTHZ)u(k+1) = ZT (Hq(i) +M−1b)
q(k+1) = Q(Hq(k) +HZu(j) +M−1b)

(2.8)

The (i, j) pair is known as the coupling factor (as defined in [1]). The coupling
factor has an important influence on the resulting Jacobian of our iteration, and the
most common couplings are named below.

3



i j coupling
k k Jacobi
k k+1 Gauss-Seidel (GS)

k+1 k Reverse Gauss-Seidel (RGS)
[1]

This coupling is a rather important factor for the computational convergence
of the projectors P and Q. This interplay is not fully discussed in [1, 11], and we
touch on it lightly on here. We will return to this discussion after we note how to
efficiently calculate expressions involving Z,P, and Q for the Jacobi coupling in the
implementation section.

3. Theoretical Convergence of RPM. All of our theoretical results depend
on the appropriate calculation of the Jacobian of RPM. We review this result now
(note: RGS’ Jacobian is a correction on [1]). The following is derived from basic linear
algebra, and (2.1).

Theorem 3.1 (The Jacobian of RPM). Denote the error vector as the appropriate
difference in both projection P and Q, respectively, as

e(k) =

(

p(k) − p
q(k) − q

)

(3.1)

Each of the three couplings’ iterations can be expressed as Je(k) = e(k+1) [1]
where:

JJ =

(

0 C
E B

)

(3.2)

JGS =

(

0 C
0 EC +B

)

(3.3)

JRGS =

(

CE CB
E B

)

(3.4)

Where

E := QHP,B := QHQ,C := P (Z(I − ZTHZ)−1ZT )PHQ(3.5)

Proof.
We begin with the Jacobi Coupling, and show that C(q(k) − q) = p(k+1) − p:

C(q(k) − q) =
P (Z(I − ZTHZ)−1ZT )PHQ(q(k) − q)

Z(I − ZTHZ)−1ZTHQ(q(k) − q)
Z(I − ZTHZ)−1ZTHq(k) − Z(I − ZTHZ)−1ZTHq

(3.6)

We apply (I − ZTHZ)u(k+1) = ZT (Hq(k) +M−1b) (from equation 2.1)
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C(q(k) − q) = Z(I − ZTHZ)−1(I − ZTHZ)u(k+1)

−Z(I − ZTHZ)−1ZTM−1b− Z(I − ZTHZ)−1ZTHq
= Zu(k+1) − Z(I − ZTHZ)−1ZT (M−1b+Hq)
= Zu(k+1) − Z(I − ZTHZ)−1(I − ZTHZ)u
= Zu(k+1) − Zu
= p(k+1) − p

(3.7)

Now we show that E(p(k) − p) +B(q(k) − q) = q(k+1) − q:

E(p(k) − p) +B(q(k) − q)
= QHP (p(k) − p) +QHQ(q(k) − q)
= Q(Hp(k) +Hq(k))−Q(Hp+ q)
= Q(HZu(k) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)

(3.8)

This satisfies equation 2.1 exactly

Q(HZu(k) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)
= q(k+1) − q

(3.9)

We proceed similarly for the other two couplings. Starting now with Gauss-Seidel,
we have already shown that p(k+1) − p = C(q(k) − q) in the above Jacobi Coupling
case, since the (i) component is the same for the Jacobi coupling as the Gauss-Seidel.

Therefore, we only show that (EC+B)(q(k)−q) = q(k+1)−q, the proof is similar
to the Jacobi case with the following replacing E(p(k) + p) +B(q(k) − q) in 3.8

EC(q(k) − q) +B(q(k) − q)(3.10)

We have already shown that p(k+1) − p = C(q(k) − q):

= QHP (p(k+1) − p) +QHQ(q(k) − q)
= Q(Hp(k+1) +Hq(k))−Q(Hp+ q)
= Q(HZu(k+1) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)

Q(HZu(k) +Hq(k) +M−1b)−Q(HZu+ q +M−1b)
= q(k+1) − q

(3.11)

Finally, the Reverse Gauss-Seidel case. The (j) component is the same for the
Jacobi coupling as the Reverse Gauss-Seidel, thus E(p(k)−p)+B(q(k)−q) = q(k+1)−q.

All that remains to be shown is that CE(p(k)−p)+CB(q(k)−q) which we already
know is equal to C(q(k+1)−q) = p(k+1)−p, again applying equation 2.1 where needed.

P (Z(I − ZTHZ)−1ZT )PHQ(q(k+1) − q)
= Z(I − ZTHZ)−1ZTHQ(q(k+1) − q)
= Z(I − ZTHZ)−1ZTHq(k+1) − Z(I − ZTHZ)−1ZTHq

Z(I − ZTHZ)−1(I − ZTHZ)u(k+1) − Z(I − ZTHZ)−1ZTM−1b
−Z(I − ZTHZ)−1ZTHq

= Zu(k+1) − Z(I − ZTHZ)−1ZT (M−1b+Hq)
Zu(k+1) − Z(I − ZTHZ)−1(I − ZTHZ)u

= Zu(k+1) − Zu
= p(k+1) − p

(3.12)
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With this result, we may now state the central new theoretical result of this paper.
Theorem 3.2 (RPM Preconditioner). k steps of RPM is equivalent to precon-

ditioning the original system (i.e., that C−1b approximates the solution to Ay = b)
by:

C−1 := (I, I)Jk

(

P
Q

)

+ (I, I)(I − Jk)

(

P
Q

)

A−1(3.13)

Where J = JJ , JGS , or JRGS according to the chosen coupling, and assuming that Q
is chosen so that J has no eigenvalues ≥ 1.

Proof. As stated in the previous theorem, RPM can be expressed via Jek = ek+1,
thus we define:

v : =

(

Py
Qy

)

vk : =

(

Pyk
Qyk

)

ek = vk − v

(3.14)

Jvk + (v − Jv) = vk+1(3.15)

One obtains the actual error vector by premultiplying (3.15) by (I, I) (since

(I, I)

(

Py
Qy

)

= Py +Qy = y). Thus, after premultiplying by (I, I) and then recur-

sively expanding telescoping (3.15), we obtain:

(I, I)(Jkv0 +Σk−1
i=0 J

i(I − J)v)(3.16)

Therefore, if we specify the right hand side in solving a system Ay = b, namely

with v0 =

(

P
Q

)

b, and v =

(

P
Q

)

A−1b, we get our result that k steps of RPM is

the same as preconditioning the original system by (Since postmultiplication of (3.17)
with b results in (3.16)):

C−1 = (I, I)Jk

(

P
Q

)

+ (I, I)Σk−1
i=0 J

i(I − J)

(

P
Q

)

A−1(3.17)

Since J has no eigenvalues ≥ 1, then Σk−1
i=0 J

i = (Jk − I)(J − I)−1:

C−1 = (I, I)Jk

(

P
Q

)

+ (I, I)(I − Jk)

(

P
Q

)

A−1(3.18)

We can restate this more clearly with the following corollary.
Corollary 3.3 (RPM Convergence Criteria). k steps of RPM convergence rate

bound is determined by (QH)k+1
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Proof. We recall that the interior preconditioner of RPM (the matrix used in the
Richardson splitting) is M , and the equivalent preconditioner expression of k steps of
RPM as described by the previous theorem is C.

Without loss of generality, the preconditioner inside RPM (M) may be set to be
I. We may say this because M in RPM is the same as using this first on A (in other
words, applying RPM to the system M−1Ax = M−1b) and letting M = I in (3.16).

Thus A = I −H (where H := I −M−1A).
Using the previous thorem (and now using that theoretically E = 0 = C):

I − C−1A = I − C−1(M−1A)

= I − (I, I)

(

0 0
0 (QHQ)k

)(

P
Q

)

M−1A

−(I, I)

(

P
Q

)

+

(

0 0
0 (QHQ)k

)(

P
Q

)

= (QHQ)k(I −M−1A) = (QHk+1)

(3.19)

So far, we have only detailed the convergence and rate of convergence for the
Jacobi, Gauss-Seidel, and Reverse Gauss-Seidel. We now build off of the work in
[11] to prove that for all couplings where (i, j) ≤ (k + 1, k + 1) we have convergence.
In a style similar to the convergence results of [8], we define the following three 2N
(where ideally one should choose N > k) dimensional matrices using GNU Octave and
MATLAB’s diagonal notation to simplify the presentation where diag(v, k) indicates
the matrix whose kth superdiagonal (subdiagonal if negative) has entries in the vector
v and is otherwise 0[4, 13].

N1 = diag((0, 1, 0, 1, 0, 1, · · ·) ,−1)
N2 = diag((0, 1, 0, 1, 0, 1, · · ·) ,−j)
N3 = diag((1, 0, 1, 0, 1, 0, · · ·) ,−i)

(3.20)

And we define the following error vector:

eN =





















e(0)

e(1)

...
e(k)

...
e(N)





















=





















(p(0)T − pT , q(0)T − qT )T

(p(1)T − pT , q(1)T − qT )T

...
(p(k)T − pT , q(k)T − qT )T

...
(p(N)T − pT , q(N)T − qT )T





















(3.21)

We then note that the RPM iteration as expressed in equation (2.1) can instead
be modeled by the kth entry of

RN · eN := (N1 ⊗B +N2 ⊗ C +N3 ⊗ E)
k
· e(3.22)

Where B,C,E are defined in equation (3.5) and ⊗ is the Kronecker product
We may do this since we may restate (2.1) as
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p(k+1) − p = P (Z(I − ZTHZ)−1ZT )PHQ(q(i) − q)
q(k+1) − q = QHQ(q(k) − q) +QHP (p(j) − p)

(3.23)

Therefore repeated iterations are modeled by repeated multiplications of RN ,
and if we show that Rm

N → 0 independent of N , then we will show that all couplings
(i, j) ≤ (k + 1, k + 1) converge.

Theorem 3.4 (General RPM Coupling Convergence). Rm
N → 0 in 2-norm inde-

pendent of N .
Proof.
Note that C2 contains a product of Q and P , and therefore = 0, likewise, theo-

retically E = 0. Thus

||Rm
N ||2 = ||(N1 ⊗B +N2 ⊗ C +N3 ⊗ E)m||2

= ||(N1 ⊗B +N2 ⊗ C)m||2
= ||Σm

n=0

(

m
n

)

(Nm
1 ⊗Bm)(Nn−m

2 ⊗ Cn−m||2
≤ ||Nm

1 ⊗Bm||2 +m||I ⊗Bm−1||2||N
m−1
1 ⊗ I||N2 ⊗ C||2

(3.24)

Since Ni simply zeros out certain elements of the shift operator, ||Ni||2 ≤ 1, thus
||Nm−1

1 ⊗ I||2||N2 ⊗ I||2||I ⊗C||2 ≤ ||I ⊗C||2 ≤ σmax(C) = K, which is independent
of N .

All that needs to be shown if that ||I ⊗ Bm−1||/m → 0. But since B = QHQ,
and Q was chosen to correspond to be the projection to the eigenspace where the
eigenvalues of H are < 1. Therefore, the spectra of Bm−1 and likewise the maximum
singular value of Bm−1 decays exponentially to 0 and thus the above → 0 independent
of N .

4. Implementation. In order to create an efficient implementation, we need
first to discuss how to compute the projectors P,Q efficiently. To do this, we calculate
the Z matrix recursively as in [1]. We first observe (using the invariance of P under
H)

q(k+1) = Q(M−1b+Hq(k))
q(k+1) − q(k) = (QHQ)(q(k) − q(k−1))

(4.1)

This implies that q(k+1)−q(k) will lie in the dominant eigenspace of QHQ. There-
fore, we can use the power method on the successive q vectors to progressively ob-
tain the Q projector ([21]). The above equation can be used to approximate the
dominant eigenspace of QHQ by computing a small window of q(k+1) − q(k) for
k = j − wind + 1, · · · , j, computing an orthonormal basis S of this space, and then
using the Schur vectors T (i.e., the columns of the orthonormal matrix of the Schur
decomposition, which are needed to ensure that P is an invariant subspace) of the
dominant eigenspace STHS so that ST approximates the Schur vectors of H [1].

There are various ways to implement the deflation step. We proceed by first
reviewing the implementation in [1] before describing our own. In [1], the vec-
tors that comprise the Krylov subspace to be deflated are denoted by ∆q(k) :=
q(k+1) − q(k), and we compute a small window of wind many of these difference vec-
tors, {∆q(k)}jj−wind+1. The user chooses this wind value, along with the number of
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eigenvalues to be deflated, denoted as def . We use a freq parameter to denote during
which iterations the eigenvalues are to be deflated, i.e., the frequency at which the
deflation process takes place in the overall algorithm. Finally, we have a parameter
denoted by numeig to denote the maximum number of eigenvalues total that are to
be deflated (in the above, we assumed that Q only contained all of the eigenvalues of
modulus < 1, but in implementation there is no limitation against choosing a radius
smaller than 1).

With this, we may now recall the outline of the algorithm presented in [1]:

Algorithm 4.1 (RGS RPM).

Choose a splitting A = M −N and some y(0). Let H = M−1N , and c = M−1b

# Create the initial vectors.

do k=0:freq-1

y(k+1) = c+Hy(k)

∆(k=1) = y(k+1) − y(k)

enddo

Z = {}

u(0) = 0

q(0) = y(0) − Zu(0)

t(0) = c+Hq(0)

k = 0

while not converged

# Extract Schur vectors for Z nonmaximal

if size(Z, 2) < numeig and mod(k, freq) = 0

S = {∆(freq), · · · ,∆(freq−wind+q)}

Orthogonalize S

Perform Schur factorization on STHS to obtain def schur vectors T

Z1 = ST

Z = (Z,Z1)

Orthogonalize Z

W = I − ZTHZ

endif

# Perform the RGS coupling iteration of (2.1).

q(k+1) = (I − ZZT )(t(k) + (HZ)u(k))

t(k+1) = c+Hq(k+1)

u(k+1) = W−1(ZT t(k+1))

∆(k+1) = q(k+1) − q(k)

y(k+1) = Zu(k+1) + q(k+1)

k = k + 1

endwhile

However, we can improve this algorithm by introducing parallelism, instead of
keeping a window of the subsequent vectors q(k+1) − q(k) and applying the power
method to extract the eigenspace, we suggest using a block of vectors and using
subspace iteration, which amount to allowing q to be a n × m matrix (similar to
[15, 16, 18]). This means that the wind parameter is no longer necessary and is
instead replaced by the subspace size. Thus, in what follows all of the corresponding
y, u, q, t, c vectors from above are replaced with Y, u, q, t, C which are all block n×m
matrices. And one can use block methods to calculate the corresponding Schur vectors
[3], and parallel matrix-matrix multiplies.
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Then with minor changes from algorithm 4.1 (and retaining the def and freq
parameters defined above), this yields the following algorithm.

Algorithm 4.2 (Subspace Iteration RPM).
Choose some random n×m block of initial linearly independent vectors Y .
Choose a splitting A = M − N . Let H = M−1N , and C to be a n × m matrix

with each column = M−1b
do k=0:freq-1

Y (k+1) = C +HY (k)

# The subscript in ∆(k+1) from algorithm 4.1 is no longer necessary, since
we store all of the vectors as a block matrix S.

S = Y (k+1) − Y (k)

enddo
Z = {}
u(0) = 0
q(0) = Y (0) − Zu(0)

t(0) = C +Hq(0)

k = 0
while not converged

if size(Z, 2) < numeig and mod(k, freq) = 0
Orthogonalize S
Perform Schur factorization on STHS to obtain def schur vectors T
Z1 = ST
Z = (Z,Z1)
Orthogonalize Z over itself
W = I − ZTHZ

endif
q(k+1) = (I − ZZT )(T (k) + (HZ)u(k))
t(k+1) = C +Hq(k+1)

Reorthogonalize t
u(k+1) = W−1(ZT t(k+1))
S = q(k+1) − q(k)

Y (k+1) = Zu(k+1) + q(k+1)

k = k + 1
endwhile
Extract the first column of Y (k+1)[11]
As we have already discussed, all we have done is to take algorithm 4.1, and to

replace the appropriate vectors by block matrices wherever possible. This necessitated
some interesting introductions. For example, the matrix C contains redundant copies
of M−1b to ensure that the appropriate corrections are made to every column in
the block matrix. The ∆ variable now vanishes entirely, its purpose having been
subsumed by the block operations allow one to calculate S directly. However, the
most important introduction by far is the reorthogonalization that takes place. This
was done to ensure separation of the dominant eigenspace, as is done in subspace
iteration [16]. However, choosing to reorthogonalize the t block matrix as opposed
to u or q was done a posteriori, and how this influences the convergence is still not
entirely clear.

We may now return to a discussion of the coupling. If we increase i relative to j,
then note that by (2.1), we will compute more successive powers of Q before the next
orthogonalization to obtain the subspace is performed. This means that the coupling
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factor in the block formulation of RPM really is a means to control the stability
of the process illustrated in equation (4.1). Precisely how this stability depends on
the coupling is a complex interaction between the range of spectra being computed
in the current iteration inside the algorithm and most importantly the stability of
the multiplications and eigenspace calculation (which will be discussed below in the
numerical experiments).

5. Numerical Results. There are two central claims to verify of RPM. First
is that with deflation we might be able to make previously nonconverging iterations
converge. The second is that according to our convergence result above, further
increases in number of eigenvalues deflated should only speed up convergence further.
In all except the final two tests, we use the RGS coupling.

Before showing these numerical results, an important discussion on how to decide
to choose the various parameters in the subspace RPM method is called for. These
parameter choices were used in the experiments that follow.

The easiest parameter to determine is the subspace size (i.e., the number of
columns of the Y, S, t, u, q matrices). Ideally, the subspace size will be determined
by the number of available processors, and what communication limits these proces-
sors have. Usually, setting the subspace size to be the number of processors or some
small multiple thereof is sufficient.

There is a balance between the subspace size and frequency. Part of this needs to
take into account the number of nodes (if it is decided that the algorithm is to be im-
plemented in parallel) and the distribution of the spectra of the iteration matrix. How-
ever, one of the advantages to setting the subspace size greater than the freq param-
eter is that further iterations smooth out errors apparent earlier in the iterative defla-
tion process. Therefore, as stated in [11], subspace size is to be preferred over frequency
(this assumes that the spectra of the matrix is widely distributed enough that sub-
space iteration is a significant advantage over the power method). Thus, frequency
should be kept at 1 or 2.

Some other parameters in the algorithm left to describe as in [1] is the maximal
number of deflated eigenvalues (which we denote as numeig), and the number of
eigenvalues deflated at each iteration (which we denote by def). Typically, the number
of eigenvalues to deflate at each step should be 2 because if it were larger, then it
would necessitate a higher frequency parameter, a larger number of RPM steps in
order to accurately generate subspace projection, or a larger subspace to compensate.
If it were smaller, then it introduces numerical issues from the necessity of deflating
out complex eigenvalues pairs. However, there are cases in which a deflation size of
1 is desirable. Notably, in practice subspace RPM has to very carefully keep track of
matrix sizes. One frequent problem that may occur in poorly designed subspace RPM
implementations is that during the orthogonalization stage, the Z vector might hit
upon two vectors that lay in nearly the same subspace. If this happens, then it means
that the primary eigenspaces are extremely dominant. Fortunately, this happens early
enough in the code that if this should happen, then the code should break and replace
the deflation parameter from a 2 down to a 1. Furthermore, this is another reason to
limit the size of the deflation parameter.

The only user-dependent parameter is numeig, and is completely dependent on
how much cost the user is willing to endure. If it is possible to perform a simple
Richardson method without any deflation, and if the user has any knowledge that the
higher modulus spectra are not well-spaced, then numeig should be 0, which amounts
to simply using the Richardson method. However, reality is a harsh mistress; the vast
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majority of cases require some amount of deflation. As such, this question really
depends on the spectra of the matrix in question. An ideal application would be
to use subspace RPM where there is a succession of matrices, each changing slightly
based on a parameter (which is why nearly all of the tests in this section are on Poisson
and Helmholtz problems that differ by a slightly changing diagonal parameter). In
this way, if one is assured that the process succeeds in one parameter domain, the
parameter domain may be extended slightly by increasing the numeig quantity. In
short, numeig should be as small as one can get away with and be used in such a way
or application that it can gradually be increased as the need arises.[11]

Figure 1. (a),(b): Deflation speeding up convergence[11]

We exhibit the claim that we can speed up convergence in figure 1 performed
sequentially in GNU Octave [4] on a simple home desktop machine. This shows the
residual norm (all norms are the standard 2-norm) vs. iterations with a very standard
toy matrix setup, a Poisson matrix of size 100 simply for purposes of illustration,
reordered with reverse Cuthill-McKee and using a banded matrix for our splitting.
The maximum number of eigenvalues to be deflated is 4, the subspace size is 4, the
frequency of deflation is 1, and the number of eigenvalues deflated at each step is 2.
(note that there might be a delay in convergence initially. This is due to needing a few
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more initial steps in order to appropriately calculate the projector; this is a patten
that will continue throughout these numerical results). It takes a few iterations for
convergence to be assured (Fig. (a)), and then ensure the speed-up of RPM upon
further deflation (Fig. (b)).

As stated above, this algorithm can also make divergent iterations convergent. We
show this by keeping all the parameters the same, except we change the problem into
a Helmholtz problem by decreasing the value of the diagonal entries down from 4 to
3.6. Again, we compare RPM with only 1 eigenvalue deflated, and with 4 eigenvalues
deflated:

Figure 2. Deflation preventing divergence[11]

Finally, the following not only also illustrates the speed-up upon deflating more
eigenvalues, but also demonstrates algorithm 4.2 and the claim of parallelism un-
derlying the algorithm. Using this, larger sizes become much more feasible, and
the following Poisson system has dimension 4194304 with approximately 400 million
nonzeros running in parallel on an Intel based machine with 8 cores (we recall from
the parameter discussion above that this means that the block sizes are set to be 8)
and using a MPI/FORTRAN implementation. Here, we compare block Jacobi RPM
with 2 eigenvalues deflated, and block Jacobi RPM with 4 eigenvalues deflated.
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Figure 3. Parallel deflation speeding up convergence[11]

The question of the optimal coupling is a much more difficult problem and unlike
the above, it has not been adequately addressed in the literature. This is partly
because inherent in this question are stability issues of this algorithm, since in practice
4.2 needs a reorthogonalization step, as we mentioned that normal subspace iteration
also needs. We show the stability issues with the following test, performed on a
desktop machine in GNU Octave [4] with a randomly generated dense matrix in order
to enhance possible stability issues

Figure 4. The influence of coupling numbers on convergence[11]

What we see is a stark performance benefit for the RGS coupling, but not for
other couplings. We hypothesize that the reason for why the RGS coupling performs
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so much better than the other couplings is because the delay in receiving the u vector
in the iteration allows the q vector to obtain an extra multiplication by H, which has
the result of increasing the accuracy of the subspace iteration. As far as we have seen,
the RGS coupling appears to be an ideal choice for most test cases.

6. Conclusion. Splitting based methods frequently exhibit poor convergence or
robustness. We have added to a method that aids in the alleviation of this problem
through the deflation of troublesome eigenvalues implicit in the calculations of such
iterative methods. In particular, we have introduced changes that allow effective
parallelization while retaining the robustness of the previous RPM algorithm. We not
only improved the practical implementation of subspace RPM, but also improved its
theoretical background by correcting its Jacobian expression and using this to show a
central preconditioner result. It was with this result that we were able to clarify the
convergence behavior of subspace RPM. Finally, we provided a number of numerical
examples and experiments and provided an extensive discussion of efficacious choices
for the parameters in subspace RPM. With these improvements, subspace RPM can
remain an effective subroutine both practically and theoretically.

Furthermore, we have left a possibility for more research into the coupling factor.
Because of its ability to control the stability in determining the dominant eigenspace,
it does not make sense for it to stay fixed during each iteration. It may be possible to
change the algorithm slightly so that it is made more stable and the coupling factor
is chosen adaptively (a similar proposal was originally suggested in [1], but not yet
implemented). If at a given step the algorithm is trying to compute the nth eigenvalue
to deflate against with a subspace k, then the difference in i− j of the coupling factor
should depend on the ratio of the eigenvalues of H, | λn

λn+k

| (if the hypothesis stated

regarding the performance of the RGS coupling performs is true). At the moment, the
accuracy of the implicit eigenvalue problem is a serious bottleneck that is typically
overcome with nesting strategies as in [11]. Therefore, this remains an important
avenue of research.
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